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PREFACE

The basic theory underlying the use of systems of simultaneous equations
in economic research was developed about 1943. Much of the early literature
on this subject assumed a knowledge of higher mathematics and most of the
applications of the method were mede by research workers who had such knowl-
edge. More recently, descriptions of this general approach that presume only
& limited knowledge of mathematics have been published; and the method itself
is beginning to be used by research workers who have little or no knowledge
of calculus and matrix algebra.

Descriptions of the camputations involved in handling systems of simul-
taneous equations are given in several books. Most of these » however,
assume some knowledge of matrix manipulation, and all that have came to the
attention of the authors omit many steps and fail to provide adequate coverage
of the many special situations that are likely to arise.

This handbook is designed to provide a complete description of the steps
involved in the more common types of problems and to illustrate them in a vay
that will be clear to research and clerical workers who have an acquaintance
only with standard methods for handling single equation multiple regression
analyses. Some knowledge of determinants and matrices is required for a
number of problems, but these aspects are discussed in considerable detail
before they are applied.

As some statistical computing units may prefer to use a comparable
approach for all problems of this sort, whether they involve a single or a
simultaneous set of equations, a method of handling ordinary least squares
multiple regression analyses is given which utilizes the same initial steps
as those for systems of simultaneous equations. This method is believed to
be more efficient than those now commonly in use; it is easier for beginners
to understand than those based essentially on the Doolittle approach, as no
back solution is required. The description of this method should be clear to
any clerical worker who is acquainted with the obtaining of sums of squares

and cross products.

The general approach used in this handbook for systems of equations is
given in Chapter 4 of A Textbook of Econcmetrics by Lawrence R. Klein, and
in Chapter 10 by Chernoff and Divinsky of Studies in Econometric Method,
Cowles Commission for Research in Economics Monograsph 14. Minor modifications
have been made in methods that these authors suggest. These modifications and
sources for other material are indicated by footnote. Suggestions offergd by
Frederick V. Waugh and Glenn L. Burrows, both of the Agricultural Marketn.lg
Service, and by Clifford Hildreth of Michigan State University, were particu-

larly helpful.

The resesrch on which this report is based was made under authority of
the Agricultural Marketing Act of 1946 (RMA, Title II).
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COMPUTATIONAL METHODS FOR HANDLING SYSTEMS
OF SIMULTANEOUS EQUATIONS
With Applications to Agriculture

by
Joan Friedman, Mathematical Statistician, and Richard J. Foote, Head,

Price and Trade Research Section,
Agricultural Marketing Service

One of the purposes of this handbook is to provide a standard method of
approach for handling any problem that involves the estimation of structural
coefficients for economic relationships whether they are derived from a single
equation or a system of simultaneous equations. In connection with the single
equation approach, an example involving 5 variables is shown. The computa-
tions required for other numbers of variables are obvious.

When working with systems of simulteneous equations, modifications are
required depending on (1) whether particular equations are just identified
or overidentified and (2) the number of endogenous and predetermined variables
in each. Methods for determining the degree of identification are given on
page 28; table 11 on page 51 shows the exact steps to be used for any given
situation. Examples are worked out in detail at each point that it appeared
confusion might arise. In the past, many analysts have used the method of
reduced forms to handle systems of equations for which each equation is just
identified. We suggest, instead, use of a method that represents a slight
modification of that used for equations that are overidentified. The struc-
tural coefficients obtained by either method are identical.

In addition to obtaining estimates of the various coefficients as such,
most analysts want some indication of the probable sampling errors in these
coefficients and in forecasts made from the analysis. If the independent
variables used and the unexplained residuals from the analysis meet certain
rather rigid specifications, such measures are available for single equation
analyses regardless of the number of observations used in the study, and
methods for obtaining them are given here. Exact estimates for such measures
when working with systems of simultaneous equations, or for single equation
analyses when based on the kind of data usually used in economic research,
have been developed only for the case of an infinitely large sample.

Alternative methods for just identified equations which presumably wc?uld
give identical answers with respect to the standard errors of the coefficients
if applied to an infinitely large sample yield quite different answers.when
applied to analyses based on semples of the size commonly encountered in
studies relating to economic data. We have outlined one of these methods for
obtaining standard errors of the coefficients for equations that are just
identified. Based on a study of a limited number of empirical examples,
estimates obtained by this method range from 0.25 to O.? 'Fimes as large as
those given by an equally good method as applied to infinitely large samples.
Conventional t-tests cannot be carried out with such estimates but, in a )
rather general way, they should give some indication of the probable magni-

tude of sampling fluctuations in the coefficients.
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In contrast to these results, Wagner (g_]_.) }_/ used a Monte Carlo approach
to study the sempling varisbility of coefficients that relate to equations that
are overidentified, based on 100 samples of 20 observations each. These
results suggest that the t-distribution may apply to such estimates and their
computed standard errors. Further research will be required to ascertain
whether this holds in general or only for the particular model that he studied.

In view of these problems with respect to standard errors of structural
coefficients, we do not give a formula for the standard error of forecast from
a system of simultaneous equations.

As meny computations are required for complex systems of equations, it
frequently is convenient to adjust the sums of squares and cross products in
such a way as to meke the sums of squares nearly equal to 1. This is desirable
for any problem, although less important for simple than for complex ones.
Methods of making this adjustment are discussed on page 6. All examples are
based on the assumption that such an adjustment is used.

In general, the carrying of 9 decimals, particularly for problems involv-
ing many variables, is recommended to avoid the necessity of using a "floating"
decimal point. In all cases, sufficient decimals should be carried for a mini-
mum of 4 significent figures to appear in any computation. Some calculating
machines do not provide full carryover for this number of decimals unless they
are equipped with a special attachment. Errors caused by not having full
carryover are important chiefly in connection with some types of negative
multiplication. Clerical workers who plan to use 9 decimals in their compu-
tations should ascertain whether their machines are equipped to provide full
carryover and, if not, should consult their manufacturer's representative. To
save space in the tables included in this handbook, fewer decimals are shown
than were actually used in the computations. Because of this, some computa-
tions appear to be slightly in error.

This handbook is designed to show how to make the necessary computations
when working with alternative types of analyses. Material relating to inter-
pretation has in general been omitted. The reader is referred to standard
texts on statistics and econometrics. Specific references are given on certain
topics.

A 5-VARIABLE MULTIPLE REGRESSION PROBLEM

This exemple is taken from a study by Lowenstein and Simon (15); it deals
with factors that affect the domestic mill consumption of cotton. Logarithms
of the following variables for the years 1921-4O and 1948-52 were used in the
computations shown here:

1/ Underlined numbers in parentheses refer to Literature Cited, p. 87.
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X, - Domestic mill consumption of cotton per capita, pounds
Xo - Deflated dispossble income per capita divided by 10, dollars

X3 - Change in deflated disposable income per capita from the pre-
ceding year, dollars

X), - Mill consumption of synthetic fibers per 100 persons, pounds

X5 - Deflated price per pound of Middling 7/8 inch cotton at the
10 spot markets, year beginning the preceding July, cents.

Since the regression equation was based on logarithms of the variables, coding
of X, and X), affected only the constant term. The decoded value is given in
their article whereas all of the coefficients shown in this section of the
handbook apply to the coded variables expressed in logarithms.

Obtaining the Augmented Sums of Squares and Cross Products

The first step in the solution of any problem of this sort is to com-
pute the "augmented" sums of squeres and cross products or mcments. Use of
augmented moments is suggested to avoid rounding errors involved in obtain-
ing arithmetic means. As used in this connection, an augmented moment
equals the actual moment multiplied by the number of observations in the
sample, here designated as N. In working with augmented moments , the sums
of squares and cross products in terms of original values are cumulated
directly on the calculating machine as for any problem of this type. The
total for the observations included in the analysis is then multiplied by N,
or the number of such observations. The correction factor for an augmented
sum of squares equals the square of the sum of the series. The correction
factor for an augmented cross product equals the product of the sum for each
series. Subtraction of the correction factor from the augmented sum gives
the augmented sum in terms of deviations fram the respective means. These
computations for the 5-variable regression problem are illustrated in table 1.
It should be noted that Xy, the dependent varieble, is written first.

A check column should always be carried in these and other computations.
This is obtained by computing a "new" variable, Z, for each year or observa-
tion in the analysis; this variable equals the sum of &ll of the varisbles
for that observation. To check the computations involved in obtaining I,
the sum for each of the variables, including the varisble %, over all of the
Yyears included in the analysis is obtained. These sums constitute the first
row of table 1. The sum of these sums for the variables other than Z should
exactly equal the sum of g. If they do, the computetions involved in obtain-
ing Z are correct. The second row in table 1--the means--is obtained by
dividing the sums in the first row by N, the sample size, which, for this
example, equals 25. Cross-products for Z with the other variables in the
analysis are obtained in the usuel way and are shown in the last colum}.

The check for each row is carried out by computing the sum of &ll the items
in the row, except for the item in the last, or Z column. For example,
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in the second row, the check is obtained by adding the means for X1, Xp, Xa,
X}, and X5. This should equel, except for rounding errors » the item in thé
¥ column, and if true, this is indicated by a ./ placed next to that item. 2/

The terms in the lower left-hand part of the table are omitted. But in
order to check the computations in all sections after the first, these
omitted terms must be included. For example, the computation of the check
for the first row of the third section of table 1 is given by:

0.2060 + 0.2690 + 0.0276 + 0.3222 + 0.2035 = 1.0284

The terms omitted from this row in the table, 0.2060 and 0.2690, are obtained,
respectively, fram the first row of the first section and the first row of
the second section of column (3), the column in which the first written term
of the row, 0.0276, appears. In general, for the ith row of any section, the
omitted terms to the left of any given term, call it m, are obtained from

the ith row of each section of the column in which m appears.

If a discrepancy due to a rounding error should occur, the sum across
the row is considered as the correct figure and the figure originally shown
in the Z column 1s corrected accordingly. This corrected value is used in
further computations. The following tabulation, showing the original com-
putations with nine decimals for the items in the lower right cornmer of
teble 1, illustrates this point:

Z column for section 5 of table 1

With 4 decimals : With 9 decimals
210.3922 210.39220317 16
5,259.8050 / : 5,259.805079400
5,247.6909 5,247.690950246 /

1211 J/ 12.11k129154 ./

~ the calculation with nine decimals, £ in the first row eqt'xals
210.392203177. The result obtained by adding a.crogs the row is
210.392203176. Therefore the ninth decimsl place is changed from a 7 to
a 6. The corrected value, 210.392203176, is multiplied by N to give
5,259.805079400 in the second row. The above example illustrates a .
further point; since only a limited number of decimals are shown in this
handbook, & J was placed after all items in the Zcolumn that serve a]sn
checks. However, rounding errors do occur in some of the§e items. T.ese
result in part beceuse the omitted figures were dropped without rounding.

in the final
2/ Rounding errors are usually taken to mean a discrepg.nc':y in th
deEiTma.l placg. In some computations, the number of significant figures in

the items operated upon is a further consideration.
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If an error is mede in computing the sums of squares and cross products,
the following method is more efficient than a direct recomputation as a means
of locating the error. Suppose that the checking operation indicates that an
error has been made in obtaining the extensions with Xj. Continue to calcu-
late the extensions with X, and, if the check for this indicates that no error
has been mede, we know that the augmented moment between X, and in the
first section is correct. Similarly, if the extensions with X3 check, we know
that the augmented moment between X; and X3 in the first section is correct.
If all other extensions check, the mistake is in the computation of the sum of
the squares for X,. If one of the extensions does not check, recomputation of
the corresponding element in the first section is indicated. A similar proced-
ure is used if the initial error occurs in an extension other then with X;.

Ad justments to Make the Sums of Squares Nearly Equal 1

- It is a great convenience in camputations to have all the elements on the
main diagonal close to 1. In making this adjustment we are concerned only with
the last row in each section of table 1. A set of values that are powers of
10, the kj, where i is the variable to which it epplies, is chosen such that
when the sum of squares for the varisble is multipljed by the square of the kj
the answer lies between 0.1 and 10. The value (ki) is referred to as the ad-
Justment factor. The k; are shown in the second column of table 2. They are
determined in the following manner: In table 1, note that the sums of squares
for Xy, X,, and X3, respgctively, lie between 0.1 and 10; therefore the adjust-
ment Factor equald (1.0)° or 1.0 and k equals 1.0 for X,, X5, and X3. For X),
hovever, the sum of the squares equals 161.1827 and it must be mult?plied. by
an adjustment factor of (0.1)< or 0.0l to bring it between 0.1 and 10; there-
fore k;, equals 0.1. If the sum of squares for Eu, for example, had been
1611.827, the adjustment factor would be (0.01)° or 0.0001 and k) would equal
0.01. The adjustment factors for the cross products, the kikj, are obtained
by multiplying the k's for the variables involved. For exemple, k klp , the
ad justment factor for IxXsx),, equals (1.0) (0.1) = 0.1. The k;k; a¥e shown in
the right-hand section of table 2.

Table 2.- Adjustment factors

kyks for -
Variable . Value of ki - - " -
Xy : 1.0 1.00 1.00 1.00 0.10 0.10
X5 : 1.0 1.00 1.00 .10 .10
X3 H loo 1.00 .lO olo
X)'I' M ol .Ol ool

X5 : -1 .01
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Adjusted augmented moments are obtained by mltiplying the augmented
moment, the terms in the last row of each section of table 1, by if.:e appro-
priate adjustment factor from table 2.

The adjustment process is important, naturally, only when the ki
differ considerably from one. Particularly when working with logarithms or
first differences of logarithms, all of the ki ’noma.lly are close to one.
Some computing units may prefer to adopt a generel rule that adjustments are
made only when at least one of the k; lies outside the range 0.1 to 10. Had
this rule been followed, adjustments would not have been made for this anelysis.

The steps involved in obtaining the adjusted augmented moments are exact-
1y the same for single and multiple equation anselyses.

Obtaining Multiple and Partial Regression and Correlation Measures

The method of determining multiple regression constants discussed in the
following pages differs in these two important ways from that given in some
of the standard statistical textbooks: (1) The use of D, the inverse of the
camplete moment matrix, _3] and (2) the computation of the inverse using a
variation of the Doolittle method that omits the conventional back solution. y

Steps involved in the forward solution of the Doolittle method are given
here in full detail as an aid to readers who are unacquainted with this method.
Experience with our central computing unit demonstrated this as the easiest
way to learn how to carry out these operations. Once the general approach is
learned, many of the computations shown individuaelly in table 3 can be cumulated
directly in the calculating machine. Use is made of all possible shortcuts of
this kind in the so-called abbreviated Doolittle method. This is the method
described by Klein (13, pp. 151-155). An example based on it is shown in the
appendix of this handbook. The so-called Crout method makes use of similar
shortcuts and is an equally efficient method for solving systems of simul-
taneous equations or inverting metrices. This method is described in detail

in the appendix, p. 95.

Computations involved in the forward solution of the Doolittle method are
shown in table 3 and are as follows:

In rows (1) - (5), columns (1) - (5), enter the adjusted augmented moments
computed sbove. The reader will note that the X's are listed in numerical
order; in the method used by Ezekiel, X; is placed after the last independent

3/ This epproach, suggested to the authors by Frederick V. Waugh, Direct".or,
Agricultural Economics Division, Agricultural Marketing Service, substa.nt:@.lly
reduces the number of calculations necessary for the estimation of the various
multiple regression coefficients, particularly the partial correlation coeffi-
cients. The method explained by Ezekiel (8), for example, is based upon the
computation of the inverse of a matrix using only the moments for the independ -
ent variables. Ezekiel refers to the inverse of this as the C matrix, the

elements of which are the cj 3
E/ This approach was suggested to the authors by Daniel B. Suits of the
Department of Economics, University of Michigan.
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variable. Computations involved in obtaining table 2 and the adjusted aug-
mented moments should be carefully checked as no automatic checks are availa-
ble for these steps.

Additional columns, Ii, one for each varisble in the analysis, are added
in colums (7) - (11). The makeup of these is obvious from the table.

As an glternative, data shown in the upper section of table 3 can be
recorded directly as the first row of each subsequent section.

In this forward solution we carry two check columns: Z,, column (6),
for that part of the solution concerning the x's; and Z;, colum (12), for
that part of the solution concerning the I's. For the upper section of table
3, that is, rows (1) - (5), these columns are obtained in the following way:
The element in the ith row of the Z; column is obtained by adding together
the elements in the ith row of columns (1) - (5), including the omitted ele-
ments. The element omitted in the ith row and jth column can be found in the
jth row of the ith column: For example, the omitted element in row (4), col-
um (3), is the element in row (3), column (4), namely, 0.0940. The element
in row (4) of the I, column is given by: 0.6430 + 2.1640 + 0.0940 + 1.6118 +
(-0.0407)= 4.4722. The element in the ith row of the Zy column is obtained by
adding the elements in the ith row of columns (7) - (12§. Because of the
makeup of the columns, however, each element in these rows of the Zy column
equals 1. In the computations outlined below, Z, and EI are treated as addi-
tional variables, with all the operations performed upon them.

Only the second row in the first section and the last two rows in each
succeeding section of the solution are checked. This is done in two parts,
one for the x's and one for the I's. In order to check the camputations in
either of these rows in the x part of the forward solution, sum all the ele-
ments in that row for the x columns and compare that sum with the element in
the Z, column for that row. There is no question of omitted elements here.
These figures should be identical, except for rounding errors. If they are
identical, this is indicated by a .. Where a discrepancy occurs due to a
rounding error, the sum across the row replaces the element in the Z column
and is used in further computations. (See p. 5.) The check on the computa-
tions in the I section is obtained in like menner; that is, sum the elements
in the ith row, columns (7) to (11), end compare that sum with the element in
the ith row of the Iy column.

We now consider computations involved in each row of the lower sections
of the forward solution in table 3.

Row (1).--Copy row (1) from the upper section of table 3.
Row (1").--Divide row (1) by its first term, that is by 2.1088, and per-
form the check. For computational purposes, it is more efficient to compute

1/2.1088 = 0.4741, lock it in the calculating machine, and multiply each item
of row (1) by it.

Rov_(2).--Copy row (2) of the upper section of table 3.
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Row (1)(-1.0804).--Multiply row (1) by -1.0804. This factor is the ele-
ment of row (1"), column (2), with its sign changed. Note that no figures are

inserted in this section of the table in columns to the left of column (2).

Row 12' ) .--Add row (2) and the following line and perform the check.

Row (2").--Divide row (2') by its first term, that is, by 2.7474, and
perform the check. Or, multiply row (2') by 1/2.7474 = 0.3639.

Row (3) .-Copy row (3).

Row (1)(-0.2750) .--Multiply row (1) by -0.2750. This factor is the ele-
ment of row (1"), column (3), with its sign changed.

Row (2')(0.0780) .--Multiply row (2') by 0.0780. This factor is the
element of row (2"), column (3), with its sign changed.

Row (3') .--Add row (3) and the two rows following it and perform the check.

Row (3").--Divide row (3') by its first term, that is, by 0.4973, and per-
form The check. Or multiply row (3') by 1/0.4973 = 2.0106.

Row (U4) .--Copy row (4).

Row (1)(-0.3049) .--Multiply row (1) by -0.3049. This factor is the ele-
ment of row (1"), column (4), with its sign changed.

Row (2')(-0.5347) .--Multiply row (2') by -0.5347. This factor is the ele-
ment of row (2"), column (4), with its sign changed.

Row (3')(-0.0641).--Multiply row (3') by -0.0641. This factor is the ele-
ment of row (3"), column (4), with its sign changed.

Row (4').--Add row (4) and the three rows following it and perform the check.

Row (4").--Divide row (4') by its first term, that is, by 0.6279 and perform
the check. Or, multiply row (4') by 1/0.6279 = 1.592L.

Row (5) .--Copy row (5).

51°rw (1)(-0.0672) . --Multiply row (1) by -0.0672. This is the element of
row (1™), column (5), with its sign changed.

Row (2')(-0.0559) .--Multiply row (2') by -0.0559. This is the element of
row (2"), column (5), with its sign changed.

Row ')(-0.1599) . --Multiply row (3') by -0.1599. This is the element of
row (3™, colum (5), with its sign changed.

. Bow (&) (0.272?) .-Multiply row (4') by 0.2729. This is the element of row
(4"), column (5), with its sign changed.
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N kRow 55'!.-eAdd row (5) and the four rows following it and perform the
check.

Row (5").--Divide row (5') by its first term, that is, by 0.0286, and
perform the check. Or, multiply row (5') by 1/0.0286 = 34.87h9.

This completes the forward solution.

Unfortunately, the checks do not guarantee that the correct multipli-
cand has been used; they only prove that the multiplications were carried out
correctly. As a final check, it is suggested that the multiplicands shown in
the stub be examined to make sure that the correct value was used and that
these then be used to recheck the computations in the Z1 column (column 12 in
table 3). Experience in our central computing unit has indicated that
occasionally a statistical clerk is interrupted between the computations
involved in the x and the I part of the table and that the wrong multiplicand
is ‘'used in the latter set of computations. It seems unlikely, however, that a
wrong multiplicand would be used in the x part of the table and the correct
one in the I part. When the abbreviated Doolittle solution is used (see
appendix), this final check is not needed, as the computations are carried out
on a column-by-column basis rather than a row-by-row basis.

D Matrix.--The D matrix is shown in table 3 immediately following the I
part of the forward solution. Its camputation involves the terms in the last
2 rows of each section in the I part of the forward solution. The element in
the ith row and jth column of the D matrix, dij’ is obtained by the following
formula:

d'i.j = (l,Ii)(l", Ij) + (21, Ii)(2", Ij) + (3, Ii)(3"’ Ij) + (W, Ii)
(W, 1p) + (5% I, Iy

vhere the first term within the parentheses refers to the row and the second,
to the column designation of the elements in the forward solution. Therefore:

dyq = (1) (0.b7841) + (-1.0804)(-0.3932) + (-0.3593) (-0.7225)
+ (0.2958) (0.4711) + (0.131L)(4.5847) = 1.9008
end d)p = (1)(0) + (-1.0804)(0.3639) + (-0.3593)(0.1569)
+ (0.2958)(-0.8595) + (0.1314)(-7.5270)

These sums should be cumulated directly in the calculating machine. A
check colum, £, is also carried in this computation. The elements in the Z
column, 44=, are computed in the same way as any other element in the D
matrix. In the general formula given above, Ij4 becomes 3. That the sum
across the ith row of D is identical (except for possible rounding errors
growing out of the carrying of only 4 dec